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It is shown how linear genetic algebras, ordinarily applied in situations with 
discrete time, will also simplify certain systems of differential equations in time 
continuous models. These models describe the variation of genotype frequencies 
in infinite populations in different mating systems. The cases considered include 
matings between individuals randomly drawn from the population at each 
moment, a population which is continuously backcrossed to a second, constant 
population, and a population divided into two age groups, which take part in the 
matings with different intensities. For the first case the general theory is applied 
to an example with tetraploids having a mixture of chromatid and chromosome 
segregation. 

1. INTRODUCTION 

In order to study the behaviour of successive discrete generations in infinite 
populations under certain mating systems, Etherington (1939b, 1941a) 
introduced linear commutative nonassociative algebras in theoretical genetics. 
In such algebras a basis A,, A, ,..., A, is defined in which each element corre- 
sponds to one of the possible genotypes. Then a multiplication table of the form, 

(1) 

is given, where pUk is the relative frequency of the genotype Ak among the 
offspring in matings between individuals with genotypes Ai and Aj . (In some 
special cases it is more natural only to require that the pijk should be proportional 
to the frequencies.) Etherington (1939b) calls an algebra baric if it admits a non- 
trivial homomorphism w to the scalar field, and then w is called the weight 
function. It is seen that any algebra with a table (1) will be baric with w(A,) = 1 
for all i if Ckpijk = 1 for all i, j. 

The distribution of genotypes in a population may now be specified by an 
element Ci aiAi in the algebra defined, where ai is the relative frequency of 
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genotype Ai . This element will have weight 1 (but not all elements with weight 
1 will give distributions). Contrary to the conventions, for instance in Raffin 
(1951), only such normalized elements will be interpreted as frequency distri- 
butions, and we assume that & pijk = 1 for all i, j. In situations where certain 
crosses will give no offspring at all, these restrictions may not be suitable, as for 
algebras describing sex-linked inheritance (see Gonshor (1960, 1965), Holgate 
(1970), Heuch (1972a)), but our treatment will not cover such cases, although the 
methods could be modified to apply here, too. Random mating between indi- 
viduals in two infinite populations or parts of populations will now give offspring 
with frequencies found from the product of the two corresponding algebra 
elements. Various mating systems will be represented by different sequences of 
products. 

Only a particular class of all possible linear algebras arising in the way 
described will be considered, the genetic algebras (Schafer, 1949; Gonshor, 
1971). But this class includes many cases of interest, for example arbitrarily 
linked loci (Holgate, 1968a) and polyploidy with mutations (Gonshor, 1960, 
1965, 1971; Holgate, 1966). An algebra is genetic (Gonshor, 1971) if it is possible 
to find a transformed basis C,, , C, ,..., C, with multiplication table 

where 

cicj = f yiilccr ) (2) 
k=O 

rooo=l; rojk=o for K<j; yijk =0 for k < max(i,j), (3) 

when i, j > 1. The values 1, yolt ,..., yOnn are the train roots of the algebra, 
and the basis Co , C, ,..., C, is said to be canonical. A genetic algebra is baric 
with w(C,) = 1, w(C,) = 0 for i > 1. In some cases the algebras considered 
have been shown to be special train algebras, as defined by Etherington (1939b, 
1941b), but this implies in particular that they are genetic (Schafer, 1949, 
Theorem 2). 

Several general theorems have been established for genetic algebras in situa- 
tions with discrete time, in connection with nonoverlapping generations of the 
same population (Gonshor, 1960; Holgate, 1967), for overlapping generations 
(Heuch, 1972b), and for migration (Holgate, 196813). The method of trans- 
formation to obtain a canonical basis is in the discrete case equivalent to the 
introduction of new variables to simplify certain systems of difference equations. 
We will show that the introduction of such a basis also makes it easier to solve 
differential equations in the time continuous case. Thus, the same substitution 
of variables can often be applied in both situations. 

A connection between a linear algebra in genetics and the corresponding time 
continuous differential equations has been noted before by Andreoli (1960) for 
one autosomal locus in diploid organisms. Such connections between methods 
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used in discrete and continuous situations have also been pointed out when the 
algebraic treatment has not included linear algebras, as by Bennett (1954) for 
linked loci. 

It would often be sufficient to consider a scalar field consisting of the real 
numbers. However, sometimes the transformation to canonical basis is not 
possible within this field (Heuch, 1972b), and the algebraic treatment of 
particular mating systems may also necessitate the use of complex numbers 
(as in Section 6). Therefore, all algebras are assumed to be defined over the field 
of complex numbers. In the final expressions for frequency distributions the 
imaginary parts may then be disregarded. Only the basis transformation tech- 
nique will be used here, but it is also easy to extend the differential operator 
method applied in (Reiersol, 1962) to time continuous situations. 

2. DISTRIBUTION PATTERNS 

Let B, , B, ,..., B, be a basis for the algebra &, and consider functions G 
over the set Rf of nonnegative real numbers with image in J;4. They may be 
written as 

G(t) = i b,(t) Bi y t 3 0, 
i=O 

where b, , b, ,..., b, are scalar-valued functions over Rf. The collection of all 
functions G will be designated as F(d). If b, , b, ,..., b, all are differentiable a 
certain number of times, then G will also be said to be differentiable, and we 
define 

dl”G(t) -= 
dt” 

G’“‘(t) = i bim’Bi , 111 = 1, 2,... . 
60 

This definition is independent of the choice of basis. 
Assume that JZZ is baric. Let P be a function from & to F(d) such that the 

element G in F(d) is assigned to Go in xZ. Then P will be called a distribution 
pattern if (i) G(0) = Go f or all Go in &’ and (ii) w(G(t)) = 1 for all t 3 0 
whenever w(G,) = 1. These patterns will correspond to particular ways of 
constructing sequences Gtnl from elements Gtil in the discrete case, for instance 
the way of forming the plenary sequence Gtml (Etherington, 1939b) by the rule 
Gtnl = (Gtn-il)a from any element Gtil in &. If w(BJ = 1 for all i, we have in 
general 

d(w(G(t)))/dt = i b;(t) = w(G’(t)). 
i=O 
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Thus, if G(t) is obtained from a distribution pattern, w(G(““)(t)) = 0 for m 3 1 
if w(G(0)) = 1, when G(“) exists. In Section 6 we consider two P-functions at 
the same time, producing U and V inF(@‘), dependent on each other. It is here 
natural to call these functions P distribution patterns if(i) U(0) = U, , V(0) = 
V, and (ii) w(U(t)) = zu(V(t)) = 1 f or all t whenever both w(U,) = 1 and 
w(V(J = 1. 

For a particular distribution pattern P, consider all G found when P operates 
on elements G,, in ~2 with w(G,,) = 1. P will be called a continuous train if all 
such G are differentiable a certain number of times and satisfy the same differen- 
tial equation, 

G(“)(t) + BIG’S-l’(t) + ... + OS-,G’(t) + O,G(t) = 0, (4) 

with constant coefficients 0, , 0, ,..., 19~ . Taking the weight on each side of (4), 
we see that es = 0.’ This equation may be solved in the same way as differential 
equations of real functions. We assume that no such equation of lower order 
exists. The solutions of the characteristic equation for (4) will be called the train 
roots for P. When these are known, we may write a general expression for the 
solution of (4): 

(5) 

where y. = 0, y1 ,..., yd are the different values of these roots, and Qo(t), 
Qi(t),..., Qd(t) are elements in & and polynomials in t. We could have used (5) 
in our definition of a continuous train, but (4) has been preferred to stress the 
correspondence with the definition of trains in the discrete case (Etherington, 
1939b). 

Now assume that & is genetic with Co , C, ,..., C, as canonical basis, and 
that P is a continuous train. When w(G(0)) = 1 we can then write 

k=l 

where 

ck(t) = i ~7~i(t) exp(rkd). 
j=o 

(7) 

All qki(t) are usual polynomials in t. The scalars rkO , rkl ,..., rkf will be called the 
roots for the basis element C, with respect to P. Each ck(t) will satisfy a homo- 
geneous differential equation with characteristic equation having yko , ykl ,..., ykf 

as roots. 



GENETIC ALGEBRAS 137 

3. THE PLENARY PATTERN 

Mating systems will be considered for a given infinite population where the 
frequency distribution at time t = 0 is specified by the algebra element G,, . The 
distributions at later points of time will give a function G(t), and the distribution 
pattern itself connecting each G, = G(0) with G(t) will represent the mating 
system. 

We first construct a pattern corresponding to random mating between indi- 
viduals in the same population. Set G(t) = xi ai Ai , where ai is the 
frequency of genotype Ai at the time t. In the time interval (t, t + h) a fraction 
h + o(h) of the population will die and be replaced, except for a quantity o(h), 
by offspring from random mating between individuals living at time t. With the 
multiplication table (1) a proportion & ai ~~(2) pijk of this offspring will have 
genotype A,. Thus, we get 

@7~(~ + h, = (1 - h, uk(t> + h C ui(t) uj(t)Pijk + o(h)* 
62 

This equation and the corresponding one for the time interval (t - h, t) then 
give in the usual way 

(8) 

After multiplication by A, and summation over k, we finally obtain 

G’(t) = -G(t) + G(t)2. 

The weight w(t) = w(G(t)) must satisfy the separable equation 

w’(t) = -w(t) + w(t)‘, 

(9) 

which has w(t) = 1 as the only solution with w(0) = 1. Hence, in general, the 
function P assigning the particular solution of (9) with G(0) = G, to the element 
G, is really a distribution pattern. Corresponding to the discrete sequence of 
powers this pattern will be called the plenary pattern. The assumptions under- 
lying a population model of this kind may not be very realistic. As pointed out by 
Moran (1962), such models imply that the lifetime distribution is exponential 
and the offspring distribution for each individual geometric. 

Now assume that the algebra J$ used is genetic with canonical basis 
co 9 Cl ,***9 C, . The train roots 1, ‘you ,..., yOnn in .9e are written as 1, /\r ,..., X, . 
Then we have the following. 

THEOREM 1. (i) The plenary pattern in d is a continuous train. 

(ii) C,, has the root 0. 
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(iii) For k > 1, the roots of C, will be -( 1 - 2X,) and all sums of pairs of 
roots for Ci and Cj with 0 < i, j < k and yijr # 0. 

(iv) The set of roots foF & consists of all roots for the basis elements. 

Proof. We consider a fixed initial value G(0) = G, with weight 1 and express 
G(t) as in (6). It will be proved by induction with respect to k that all clc(t) may be 
written in the form (7), with rkj determined by (ii) and (iii) previously. Since 
q,(t) = 1 this is evidently true for k = 0. Now assume that it is correct for 
k < g - 1. Inserting (6) in (9) and considering the coefficients of C, , we then get 

8-11-l 

Cg'(t> = -Cl - %I cg(t> + C C Yici&i(t) ci(t>, 
i=O j=O 

where we have applied (2) and (3). It is known that ci(t) and ci(t) may be expressed 
as in (7) and, thus, (10) may be regarded as a usual inhomogeneous differential 
equation for c,(t), with the last term on the right side equal to 

1 C b&) exp((yi, + rd, 

where kii,,(t) is a polynomial in t. Hence, (10) may be solved in the ordinary way, 
giving an expression (7) for c,(t), with quantities ygi obtained in accordance with 
(iii). The unknown constant in the solution is found using the initial value c,(O), 
and the induction is finished. All expressions (7) may now be put together to an 
expression (5) for G(t), and so the plenary pattern is a train. 

In special cases not all roots given are necessary. The proof follows the same 
lines as the one given for Theorem 5.1 in (Heuch, 1972b) for the discrete 
case. Rules for the multiplicities of the roots in our Theorem 1 may also be found, 
corresponding to those given by the discrete theorem for the sequence of 
plenary powers. The terms exp(-(1 - 2A,)t) obviously correspond to terms 
(2X,)” for this sequence. There is, however, one difference between the two 
situations. Knowledge of the roots for the complete algebra with multiplicities in 
addition to G(O), will not be sufficient for constructing the final expression (5) 
in the continuous case, since this contains too many unknown algebra elements 
included in the polynomials Qj(t). In the discrete situation it is usually possible 
from a finite number of multiplications to find values G[Q] for a sufficient 
number of different it to determine the constants, but no similar easy method 
exists in the continuous case. However, the inductive method applied in the proof 
for Theorem 1 may be used to find all q.(t) recursively, since one unknown 
constant is found at each step during this process. 

Suppose that Re(h,) < l/2 for k > 1. Then it is seen from (iii) that QO(t) in (5) 
corresponding to y. = 0 will never contain any terms in t. All other JJ~ will have 
negative real parts, and so G(t) will converge to a limit lim G(t) = QJt) when 
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t -+ co. Furthermore, G’(t) + 0, and from (9) it follows that (lim G(t)) = 
(lim G(t))2. According to Gonshor (1960, Theorem 2.1) only one such nonzero 
idempotent exists in the algebra in this case. This will give a stable genotype 
distribution. 

The method of constructing G(t) recursively may easily be extended to the 
case where (9) is replaced by G’(t) = -G(t) + (G(t))“, where (G(t))” is any 
nonassociative power of G(t), given by the shape s (Etherington, 1939a). This 
corresponds to the generalization from plenary powers to an arbitrary sequence 
of powers, treated in (Heuch, 1972b). 

4. AN EXAMPLE WITH TETRAPLOIDY 

Consider one locus with two alleles A, and A, in autotetraploids. The popu- 
lation will be described by the distribution of diploid gametes that fused to form 
the actual tetraploid individuals. The multiplication rule will be defined as if 
mating consisted of copulation of diploid individuals and immediate meiosis. 
In an infinite population with random mating this will not give an entirely wrong 
picture. The population at time t will, thus, be given by 

where A,A, , A&l,, AsA, is the (original) basis in the appropriate algebra. We 
will allow any mixture of chromosome and chromatid segregation, giving weight 
q to the chromatid component and 1 - q to the chromosome one. As the param- 
eter describing this intermediate situation Fisher and Mather (1943) used the 
probability OL for a gamete to contain genes from the same chromosome in the 
zygote producing it. Then q = 701. 

The multiplication table corresponding to (1) will be 

(&WLJLJ = (7 - q)/42 * (Ad, + 44 + &L + 44 

+ AjAm + &A,) + q/28 * (A,-4 + 44 + &A, + &An), 

i, j, k, m = 1,2. Holgate (1966) h as shown that introduction of the basis 
C,, , C, , C, given by 

Ct, = Ad,, C, = A,A, - A,A,, C, = A,A, - 2A,A, + A,A, , 

produces a multiplication table 

c,z = co, C,,C, = l/ZC, - q/28C,, 

C,C, = Cl2 = (l/6 - q/42) C, , c,c, = c22 = 0. 

Thus, we have a genetic algebra with train roots 1, l/2, and l/6 - q/42. 
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According to Theorem 1 the plenary pattern will be a continuous train, with 
C, and C, both having the root 0, and C, the roots 0 and -(2/3 + q/21). Writing 
G(t) = C,, + cl(t) C, + ca(t) C, for the normalized element, Eq. (10) is found 
to be cl’(t) = 0 for g = 1, giving cl(t) = cl(O), and 

c,‘(t) = -Q/3 + q/21) 4) - q/14 . 40) + (l/6 - q/42) ~$9~ 

for g = 2, giving 

c2(t) = ~~(0) exd-G/3 + qPl)t) 
+ ((7 - q) cl(o)2 - 3qc,(o))i(28 + a) + u - ew( -(z/3 + dW1. 

Here c,(O) = --a,,(O) - 2a,,(O) and c,(O) = a,,(O). Hence, the frequency 
distribution at time t is given by (11) with a,,(t) = 1 + c,(O) + c2(t), a,,(t) = 
--c,(O) - 2c2(4, a,,@) = c2(4. 

It is seen that G(t) converges when t + co. Introducing 01 = q/7 and noting 
that c,(O) = -2p(A,), where p(A,) is the (initial) frequency of the gene A,, 
we find that the limit is identical with the one given for discrete generations 
in (Geiringer, 1949, Eq. (23)). 

5. THE PRINCIPAL PATTERN 

We will consider a population where the individuals dying in the time interval 
(t, t + h) are replaced by offspring of matings between individuals in this 
population at time t and individuals in a constant population with the same 
genotype distribution as we originally had at time t = 0. If we use the same 
notation as in Section 3, we find 

a,‘(t) = -k(t) + c4> 40) Piik 
id 

(12) 

corresponding to (8) and 

G’(t) = -G(t) + G(t) G(0) (13) 

corresponding to (9). Equation (13) implies that d(w(G(t)))/dt = 0 if 
w(G(0)) = 1, and, thus, with G(0) = G, (13) defines a distribution pattern. 
This will be called the principal pattern, since it is analogous with the sequence 
of principal powers (Etherington, 1939b) in the discrete case. For this pattern 
we now have the following. 

THEOREM 2. The principal pattern is a continuous train in a genetic algebra d. 
The roots for .d are all w&es 0, -(I - X1),..., -(l - A,). 



GENETIC ALGEBRAS 141 

This is easily shown in the same way as Theorem 1, with 

9-19-l 

c9'W = -0 - A,) c9P) + c c Yij9CiW cm + ~,C,(O)~ 
iso j4J 

instead of (10). The roots for a particular basis element CI, will be -( 1 - A,) and 
all roots for Ci with i < K where yijlc # 0 for at least one j < K. If Re(X,) < 1 
for all K 2 1, then when t -+ co G(t) will converge to a limit satisfying lim G(t) = 
(lim G(t)) G(0). 

It is easy for the principal pattern to give an example of an algebra where the 
pattern is no train. Consider the algebra with basis A, , A, and multiplication 
table As2 = Ai2 = A,, A,& = A, . This would correspond to a situation with 
two genotypes A, and A, where a mating between individuals of the same kind 
would produce A,, individuals only, while the result of matings between different 
individuals would always be A, . Even if this case is not likely to be found in the 
real world, it will serve as a theoretical example. This algebra is not a train 
algebra as defined in (Etherington, 1939b), since its rank equation (and charac- 
teristic equation) is found to be 

G3 - 2a,G2 + (uo2 - a12)G = 0, 

for the general element G = a,&, + u,A, , and the coefficients in this equation 
are not given as functions of the weight w(G) = a, + a, . Then, according to 
(Schafer, 1949, Theorem l), it cannot be a genetic algebra either. 

In this case Eqs. (12) are 

%T~) = -%I(4 + %W %(O> + 4t> %(O), 

%‘(O = -%W + w 40) + &> %(O)- 

When w(G(0)) = 1, the solutions are found to be given by 

= 6% + A,)/2 + (G(O) - (4 + 4/2) exp(---240)~). 

Thus, G(t) satisfies the equation G”(t) + 2u,(O) G’(t) = 0, but the principal 
pattern is still no train, since the coefficient 2+(O) depends on which element 
G(0) with weight 1 was considered. It is seen that G(t) will converge when 
t + co, but an essential difference from what happens in genetic algebras is that 
the rate of convergence will not be the same for all initial values representing 
distributions. (The polynomials in (5) may depend on the initial value even in 
genetic algebras, but the exponential terms will not.) 

For other patterns, as the plenary one, the system of equations analogous to 
(12) may be far more difficult to solve in the nongenetic case. 
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6. PATTERNS FOR OVERLAPPING GENERATIONS 

The plenary pattern represents a situation with overlapping generations, 
but it imposes heavy restrictions on the mating system, since the parents of each 
new individual are drawn at random from the population at the time of the birth. 
The following time continuous model corresponds more closely to some of 
the cases treated in (Heuch, 1972b, Section 5) with discrete sequences. Let the 
total population be divided into two classes KU and KV . In the small time 
interval (t, t $ h) a fraction h of the class KU is transferred to class KV , and is 
replaced by offspring produced by matings of which a proportion b,, are between 
individuals in class KU, a proportion 2b,, between one KU and one KY indi- 
vidual, and a proportion b,, between two KV individuals (b,, + 26,, + b,, = 1). 
During the same time interval a fraction h of group KV dies and is replaced by 
individuals from Ku . A disadvantage with this model is the introduction of the 
two age classes, when the process of aging really ought to be continuous. 

Separate genotype frequency distributions will be used for the two classes, 
corresponding to algebra elements U(t) and V(t) at time t, each with weight 1. 
In the same manner as we found (9), we get 

u’(l) = - u(t) + bllU(V + 2b,,U(t) v(t) + 4,J(V, (14) 

V’(t) = -V(t) + U(t). (15) 

It follows from (15) that V”(t) exists. and that U(t) = V’(t) + V(t), U’(t) = 
V’(t) + F”(t). Inserting this in (14) we find 

V’(t) + 2V’(t) + V(t) = bllV’(t)2 + 2bV’(t) V(t) + V(t)*, W-4 

with b = b,, + b, . 
Now consider any normalized U(t) and V(t), not necessarily representing 

distributions. Expressing V(t) as a linear combination of the elements in a 
canonical basis CO , C, ,..., C, in a genetic algebra, 

we then find that such a solution of (16) may be constructed recursively in the 
same way as for (9) or (13), and that each vk(t) may be written as cr(t) in (7). 
Suppose that e)r(t),..., wgP1(t) have been found. Then, equating the coefficients 
of C, in (16), we get 

w;(t) + 2(1 - 4,) ~‘(t> + (1 - 247) q,(t) 
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The right side is here known as a linear combination Cm k,(t) exp(r,r), and the 
second order differential equation may be solved by the standard procedure. 
The characteristic roots for the homogeneous equation found by omitting the 
right side are 

bh, - 1 & (2( 1 - b) & + 6ahga)‘/a. (17) 

Thus, v&t) may be written as 

with the quantities rgj found from (17) and as sums of r-values for pairs vi(t), r+(t) 
belonging to Ci , Cj with i, j <g and yijs # 0. If the initial values U(0) and 
V(0) are known, then we also know V’(0) = -V(O) + U(O), and the two 
unknown constants in the solution for I may be determined. 

Eventually all I are found in this fashion. Since it really is possible for all 
normalized initial elements U(0) = U,, , V(0) = V, to construct a V(t) with 
weight 1 satisfying (16), it may be concluded that there is a distribution pattern 
giving such a V(t) in all genetic algebras, and that this pattern forms a train, 
where the roots are found in an obvious way. As U(t) = V’(t) + V(t), there must 
be a train giving U(t), too, and an explicit expression is obtained from the one 
for V(t). 

Even with only real train roots h, , (17) may give complex r-values if some 
train root is contained in the interval (-2( 1 - b)/b, 0). This will give rise to 
oscillations in the frequency distributions. With the algebra for linked loci and 
b, = b,, = 0, b,,, = 4, U(t) and V(t) may also be used to construct the distri- 
butions for sex-linked genes in the X-chromosome in a mating situation corre- 
sponding to the one for the plenary pattern. U(t) gives the distribution for the 
homogametic sex, V(t) for the heterogametic. This corresponds to the sequence 
H(n) = H(n - l)H(n - 2) applied by Reiersol (1962) for this purpose with 
discrete generations. 
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